Central Effects of Occipital Nerve Electrical Stimulation Studied by Functional Magnetic Resonance Imaging

Silvia Kovacs, MSc*, Ronald Peeters, PhD*, Dirk De Ridder, MD, PhD†, Mark Plazier, MD†, Tomas Menovsky, MD†, Stefan Sunaert, MD, PhD*

Objective: To study the central effects of occipital nerve stimulation (ONS) using functional magnetic resonance imaging (fMRI).

Materials and Methods: After phantom measurements, blocked design fMRI scanning was performed during intermittent ONS in a healthy volunteer with implanted electrodes connected to an external generator. To assess the effect of frequency and stimulation mode, seven different frequencies in either tonic or burst mode were generated by a neurostimulator.

Results: A qualitative analysis of the main effect of ONS demonstrated significantly decreased activity within the bilateral primary visual, auditory, and somatosensory cortices and in the amygdala. Significant increased activity was observed bilaterally in the thalamus, frontal, and parietal areas and the cerebellum. Subsequently, quantitative analysis revealed that, unlike tonic mode stimulation, burst mode stimulation appeared to be frequency-dependent.

Conclusions: This study demonstrates the feasibility and safety of fMRI studies with simultaneous ONS in a subject with externalized electrodes. The activation and deactivation pattern induced by ONS depends on stimulation mode and frequency.

Keywords: chronic pain, implantation, magnetic resonance imaging, occipital nerve stimulation, safety

Conflict of Interest: Dr. DeRidder received an educational grant from St. Jude Medical. The other authors reported no conflicts of interest.

INTRODUCTION

Nowadays, there is an increasing interest in the use of electrostimulation in the neurosurgical treatment of patients suffering from various medically intractable diseases. Different neurostimulation techniques have been used in the treatment of pain, targeting parts of the central nervous system, such as the spinal cord, motor cortex, thalamus, periaqueductal gray (PAG), and hypothalamus (1–4). The peripheral nervous system has also been a focus of pain treatments using electrical stimulation, such as the infra- and supraorbital nerves and the greater and/or lesser occipital nerves (5–7). Occipital nerve stimulation (ONS) has proven effective for the treatment of patients with cervicogenic headache syndromes such as occipital neuralgia, and patients with occipital headache syndromes such as transformed migraine (6–8). Despite the upcoming use of different types of neurostimulation, the working mechanism of this kind of neurological treatment remains largely unknown.

In this study we will focus on the working mechanism of subcutaneous ONS, which employs stimulation of the greater and/or lesser occipital nerves. As these nerves do not directly connect with structures within the cortex itself, it was thought that this kind of stimulation cannot bring about direct central effects. However, the occipital nerves interconnect with other nerves, in particular, the ophthalmic division of the trigeminal nerve (9), and form a continuous neural network affecting the trigeminal nucleus caudalis and the cervical dorsal horn at the C1 and C2 levels, which are collectively called the “trigeminocervical complex” (8–13). One way to study possible central effects is functional magnetic resonance imaging (fMRI).

Functional magnetic resonance imaging is a noninvasive technique that uses local changes in the concentrations of oxy- and deoxyhemoglobin to identify regions of altered neural activity (14) and has the potential to address several of the questions regarding this possible central mechanism. However, few fMRI studies evaluating the mechanism of neurostimulation have been conducted because of potential severe safety issues. Voltages and currents in neurostimulator leads induced by pulsed gradient magnetic fields and/or pulsed radiofrequency (RF) fields may result in harmful effects (15,16). Heating of the neurostimulator leads, which is due to the electromagnetic field, can also result in serious burn injuries.

Address correspondence to: Stefan Sunaert, MD, PhD, University Hospitals Leuven, UZ Gasthuisberg, Department of Radiology, Herestraat 49, 3000 Leuven, Belgium. Email: stefan.sunaert@uzleuven.be

* University Hospitals Leuven, Department of Radiology, Herestraat 49, 3000 Leuven, Belgium; and
† University Hospital Antwerp, BRAIn & Department of Neurosurgery, Wilrijkstraat 10, 2650 Edegem, Belgium

Source of financial support: This study was supported by grant G.0354.06 from the “Fund for Scientific Research-Flanders” FWO.

For more information on author guidelines, an explanation of our peer review process, and conflict of interest informed consent policies, please go to http://www.wiley.com/bw/submit.asp?ref=1094-7159&site=1
Informed consent was obtained from the 39-year-old right-handed healthy man subject without any history of neurologic disorders. The study was approved by the institutional ethical committee and conducted in accordance with the Convention of Helsinki. Safety testing

In a phantom pilot study, voltage induced by the gradient fields, the RF fields, and the stimulator was measured by means of an analogue oscilloscope (LA314; LeCroy, Chestnut Ridge, New York, NY, USA; four channels; bandwidth = 400 MHz) for the different MRI sequences used in this study. To detect possible signal loss, the signal-to-noise ratio (SNR) was measured in both a gradient-echo sequence and a T2*-weighted single-shot gradient-echo planar-imaging (GE-EPI) reference scan and the images acquired when the stimulator was switched on and off. The subject was asked to subjectively determine the strength of the signal-to-noise ratio (SNR) was measured in both a gradient-echo sequence and a T2*-weighted single-shot gradient-echo planar-imaging (GE-EPI) reference scan and the images acquired when the stimulator was switched on and off.

An 8-channel digital neurostimulator (DS8000, World Precision Instruments, Sarasota, FL, USA), capable of delivering tonic and burst mode stimulation, was located outside the magnet room and connected to the external leads using a double-shielded twisted pair cable to avoid pick-up of RF-radiation. Furthermore, to avoid image artifacts, RF filters were placed which provide reduced signals from certain (not described here) frequency bands. Prior to scanning, the subject was asked to subjectively determine the strength and location of stimulation to be equal at both sides of his head. This resulted in a stimulation strength of 1.0 and 2.5 V for the right and left side, respectively. The leads were disconnected when placing the subject into the magnet, and only connected to the external stimulator when the patient’s head was positioned in the center of the magnet.

Data acquisition

Functional magnetic resonance imaging scanning was performed on a 3T MR system (Achieva, Philips, Best, the Netherlands) with a transmit body RF coil and a receive-only RF head coil configuration using a T2* single-shot EPI sequence (35 contiguous transverse slices of 4 mm thickness, TR/TE = 3000/33 msec, acquired voxel size = 2.88 × 2.88 × 4.00 mm³, reconstructed voxel size = 1.8 × 1.8 × 4.00 mm³, FOV = 230 × 230 mm², reconstructed matrix = 128 × 128 mm², SENSE-reduction factor = 2, flip angle = 90°). Using this sequence, low SAR values (whole body < 0.0 W/kg and head = 0.7 W/kg) were obtained. Additionally, a high-resolution anatomic dataset (3D TFE) for overlay on the functional datasets with following scan parameters was acquired: 230 contiguous coronal slices of 1-mm thickness, TR/TE = 9.74/4.6 msec, reconstructed voxel size = 0.49 × 0.49 × 1.00 mm³, FOV = 250 × 180 mm², reconstructed matrix = 512 × 512 mm, flip angle = 8°. The SAR values for this sequence were even lower, that is <0.0 W/kg (whole body) and <0.2 W/kg (head).

The stimulation paradigm consisted of a block design which included six off/on periods of ten scans each. During the on periods, the stimulator generated seven different stimulation frequencies empirically chosen within the physiologic frequency range. Frequencies were either harmonics of 3 Hz (3, 6, 12, and 18 Hz) or harmonics of 5 Hz (5, 10, and 20 Hz) and were presented either in tonic mode (one spike) or burst mode (eight spikes at 500 Hz). During the off periods, no electrical pulses were generated. In total, there were 14 runs of 120 dynamics each.

Data analysis

Data were analyzed off-line using SPM2 software (Statistical Parametric Mapping, Wellcome Department of Imaging Neuroscience, London, UK). Functional magnetic resonance imaging scanning was performed on a 3T MR system (Achieva, Philips, Best, the Netherlands) with a transmit body RF coil and a receive-only RF head coil configuration using a T2* single-shot EPI sequence (35 contiguous transverse slices of 4 mm thickness, TR/TE = 3000/33 msec, acquired voxel size = 2.88 × 2.88 × 4.00 mm³, reconstructed voxel size = 1.8 × 1.8 × 4.00 mm³, FOV = 230 × 230 mm², reconstructed matrix = 128 × 128 mm², SENSE-reduction factor = 2, flip angle = 90°). Using this sequence, low SAR values (whole body < 0.0 W/kg and head = 0.7 W/kg) were obtained. Additionally, a high-resolution anatomic dataset (3D TFE) for overlay on the functional datasets with following scan parameters was acquired: 230 contiguous coronal slices of 1-mm thickness, TR/TE = 9.74/4.6 msec, reconstructed voxel size = 0.49 × 0.49 × 1.00 mm³, FOV = 250 × 180 mm², reconstructed matrix = 512 × 512 mm, flip angle = 8°. The SAR values for this sequence were even lower, that is <0.0 W/kg (whole body) and <0.2 W/kg (head).

The stimulation paradigm consisted of a block design which included six off/on periods of ten scans each. During the on periods, the stimulator generated seven different stimulation frequencies empirically chosen within the physiologic frequency range. Frequencies were either harmonics of 3 Hz (3, 6, 12, and 18 Hz) or harmonics of 5 Hz (5, 10, and 20 Hz) and were presented either in tonic mode (one spike) or burst mode (eight spikes at 500 Hz). During the off periods, no electrical pulses were generated. In total, there were 14 runs of 120 dynamics each.

Data analysis

Data were analyzed off-line using SPM2 software (Statistical Parametric Mapping, Wellcome Department of Imaging Neuroscience, London, UK).
University College London, London, UK). For each scan, the images were realigned, coregistered to the high-resolution T1w anatomic images, spatially normalized to the Montreal Neurological Institute standard brain, and spatially smoothed with a Gaussian kernel of FWHM = 5 mm. The images were then entered in a statistical analysis based on General Linear Model statistics which generated an individual statistical parametric map for following contrasts: “all stimulation vs. no stimulation,” “burst mode more than tonic mode,” and “tonic mode more than burst mode.” These contrasts were assessed in more detail for both qualitative and quantitative analysis.

For qualitative analysis, we used a significance threshold of \(p < 0.05 \) corrected for multiple comparisons. Anatomic labeling of significantly activated local maxima was performed using the automated anatomic labeling (AAL) map of Chris Rorden’s MRicro v1.40 (20) according to the methods described by Tzourio-Mazoyer et al. (21).

For quantitative analysis, spherical regions of interest (ROIs) of 27 voxels each were drawn around the local maxima extracted from the different contrasts described above. Percent MR-signal change of the 14 different time series was extracted in each ROI using an automated homebuilt procedure in SPM2. In order to investigate the effect of stimulation mode, a mean of the percent MR-signal change was calculated for seven time series taken together, performed with either burst or tonic stimulation. The obtained mean values for the percent MR-signal change of burst and tonic mode were compared using an unpaired two-tailed Student’s t-test. Significance threshold was set at \(p < 0.05 \). For the effect of frequency, the mean of the percent MR-signal change was calculated for each time series separately.

RESULTS
Safety testing and image quality
No (heating-related) complications of ONS were noted while performing fMRI, nor did the subject report any RF-induced electrophysiologic effects such as paresthesia.

In accordance with the measurement of Georgi et al. (16), no induced voltage could be demonstrated on the oscilloscope when switching on the gradient fields by reducing the flip angle to 0°. When switching on the RF fields, however, a modulated sinusoidal waveform with an amplitude up to 6 V and a carrier frequency of 128 MHz, according to the magnetic field strength of 3T, could be shown.

No image artifacts, such as susceptibility signal drop-outs near the electrical leads, were present in the datasets, nor was there evidence of contamination because of RF noise from outside the scanner room (Fig. 2). The measured SNR in EPI images acquired with the neurostimulator switched off and on was identical and similar to the reference scan prior to electrode implantation.

Main effect “all stimulation vs. no stimulation”
Figure 3 and Table 1 depict the location of significantly activated (stimulation more than baseline) and deactivated (baseline more than stimulation) foci obtained after analysis of the main effect “all stimulation (irrespective of frequency and mode) vs. no stimulation.” A large network of significantly activated foci was found (Table 1), which includes the hypothalami, the thalami, the orbito-frontal cortex, the premotor cortex, the PAG, the inferior parietal lobe, and the cerebellum. In primary areas like the primary motor (M1), visual (V1), auditory (A1), and somatosensory area (S1), the activation is suppressed (deactivation). In addition, a deactivation of the paracentral lobule, secondary somatosensory area (S2), the amygdala, the hippocampus, and the supplementary motor area (SMA) is demonstrated.

Effect of stimulation mode
In general, we observed that activation and deactivation were more pronounced when stimulating with tonic compared with burst mode. In Figure 4, the effect “burst vs. tonic mode” is visualized in 12 representative locations. In the globally activated foci (Fig. 4a–f), a significantly (\(p < 0.05 \)) higher percent MR-signal change was
obtained when stimulation was performed in tonic mode compared with burst mode. This is demonstrated in the middle figure by a blue color. The opposite was true for the globally deactivated foci (Fig. 4g–k). Except for the right amygdala (Fig. 4l), these foci experience a larger deactivation change when stimulating in tonic mode, hence the red color in the middle figure.

Effect of stimulus frequency

Effects related to the used stimulation frequency were observed. In Figure 5, the mean percent MR-signal change of the seven different frequencies in either burst or tonic mode is plotted for the same 12 different locations depicted in Figure 4. In case of tonic stimulation mode, all frequencies seem to contribute in the same manner to the overall brain activity (activation or deactivation). Frequencies of 5, 6, 18, and 20 Hz provoke the largest changes, while 3, 10, and 12 Hz stimulation elicit only minor central nervous system activation. In case of burst stimulation mode, a dichotomous reaction seems to be present for multiples of 3 Hz (3, 6, 12, and 18 Hz) and 5 Hz (5, 10, and 20 Hz). Stimulation with multiples of 3 Hz induces more pronounced activations or deactivations in the brain compared with stimulating with multiples of 5 Hz. Moreover, there seems to be a slight intensity effect of 3, 6, and 18 Hz, with 3 Hz inducing the smallest and 18 Hz the largest percent MR-signal change. Note that these frequency-related effects are different in the right amygdala (Fig. 4l). In case of burst mode stimulation, unlike tonic mode stimulation, all frequencies contribute in the same manner to the brain deactivation.

DISCUSSION

In this manuscript we demonstrated the feasibility of using fMRI at 3T with simultaneous ONS in a healthy volunteer. During ONS distinct (de)activation patterns could be visualized. The extent and magnitude of these (de)activations seem to be dependent upon the stimulation mode and frequencies used.

Safety

In general, fMRI is regarded as an extremely safe, noninvasive diagnostic technique (22). However, literature reports problematic safety issues and even patients’ injuries when performing (functional) MRI with neurostimulation systems present (23–25). The two principal MR safety concerns for electrical stimulation devices include RF-induced heating and induced electrical currents (15–17,26–29).
<table>
<thead>
<tr>
<th>Label</th>
<th>Anatomic area</th>
<th>Side</th>
<th>MNI-coordinates</th>
<th>t-value</th>
<th>R-label</th>
</tr>
</thead>
<tbody>
<tr>
<td>11A</td>
<td>Angular gyrus</td>
<td>L</td>
<td>−50 −60 48</td>
<td>10.88</td>
<td>35D* Amygdala</td>
</tr>
<tr>
<td>44A</td>
<td>Angular gyrus</td>
<td>R</td>
<td>−44 −58 46</td>
<td>7.39</td>
<td>23D Calcarine fissure</td>
</tr>
<tr>
<td>38A</td>
<td>Anterior cingulate gyrus</td>
<td>L</td>
<td>−6 26 −8</td>
<td>8.38</td>
<td>28D Calcarine fissure</td>
</tr>
<tr>
<td>37A</td>
<td>Calcarine</td>
<td>R</td>
<td>14 −104 −4</td>
<td>8.45</td>
<td>8D Cerebellum (crus1)</td>
</tr>
<tr>
<td>10A</td>
<td>Caudate nucleus</td>
<td>L</td>
<td>−16 4 18</td>
<td>10.91</td>
<td>19D Cerebellum (crus1)</td>
</tr>
<tr>
<td>9A</td>
<td>Caudate nucleus</td>
<td>R</td>
<td>18 2 18</td>
<td>11.04</td>
<td>16D Cuneus</td>
</tr>
<tr>
<td>4A</td>
<td>Cerebellum</td>
<td>L</td>
<td>−14 −76 −22</td>
<td>12.45</td>
<td>14D Cuneus</td>
</tr>
<tr>
<td>2A</td>
<td>Cerebellum</td>
<td>R</td>
<td>14 −76 −32</td>
<td>13.32</td>
<td>20D Fusiform gyrus</td>
</tr>
<tr>
<td>20A</td>
<td>Gyrus rectus</td>
<td>L</td>
<td>−2 52 −16</td>
<td>10.36</td>
<td>34D Hippocampus (anterior)</td>
</tr>
<tr>
<td>41A</td>
<td>Hippocampus (anterior)</td>
<td>L</td>
<td>−36 −32 −6</td>
<td>7.80</td>
<td>36D Hippocampus (anterior)</td>
</tr>
<tr>
<td>36A</td>
<td>Hippocampus (posterior)</td>
<td>R</td>
<td>30 −38 0</td>
<td>8.87</td>
<td>21D Inferior frontal gyrus (pars orbitalis)</td>
</tr>
<tr>
<td>48A</td>
<td>Hypothalamus</td>
<td>L</td>
<td>−10 −10 −12</td>
<td>5.48</td>
<td>5D Inferior occipital gyrus</td>
</tr>
<tr>
<td>46A</td>
<td>Hypothalamus</td>
<td>R</td>
<td>6 −8 −10</td>
<td>6.95</td>
<td>21D Inferior occipital gyrus</td>
</tr>
<tr>
<td>19A</td>
<td>Inferior frontal gyrus (pars opercularis)</td>
<td>L</td>
<td>−50 16 10</td>
<td>10.39</td>
<td>13D Lingual gyrus</td>
</tr>
<tr>
<td>18A</td>
<td>Inferior frontal gyrus (pars opercularis)</td>
<td>R</td>
<td>52 14 10</td>
<td>10.47</td>
<td>17D Lingual gyrus</td>
</tr>
<tr>
<td>17A</td>
<td>Inferior frontal gyrus (pars orbitalis)</td>
<td>R</td>
<td>44 44 −2</td>
<td>10.48</td>
<td>18D Middle cingulate gyrus</td>
</tr>
<tr>
<td>8A</td>
<td>Inferior frontal gyrus (pars triangularis)</td>
<td>R</td>
<td>50 36 22</td>
<td>11.06</td>
<td>24D Middle frontal gyrus (pars orbitalis)</td>
</tr>
<tr>
<td>22A</td>
<td>Inferior parietal gyrus</td>
<td>L</td>
<td>−46 −48 48</td>
<td>10.02</td>
<td>29D Middle frontal gyrus (pars orbitalis)</td>
</tr>
<tr>
<td>16A</td>
<td>Inferior parietal gyrus</td>
<td>R</td>
<td>48 −44 56</td>
<td>10.54</td>
<td>30D Medial occipital lobe</td>
</tr>
<tr>
<td>31A</td>
<td>Middle cingulate gyrus</td>
<td>L</td>
<td>−6 −28 34</td>
<td>9.50</td>
<td>9D Middle temporal gyrus</td>
</tr>
<tr>
<td>29A</td>
<td>Middle cingulate gyrus</td>
<td>R</td>
<td>6 −40 46</td>
<td>9.55</td>
<td>6D Middle temporal gyrus</td>
</tr>
<tr>
<td>28A</td>
<td>Middle frontal gyrus</td>
<td>L</td>
<td>−36 52 2</td>
<td>9.68</td>
<td>4D Middle temporal gyrus</td>
</tr>
<tr>
<td>15A</td>
<td>Middle frontal gyrus</td>
<td>R</td>
<td>32 52 4</td>
<td>10.61</td>
<td>26D Medial temporal gyrus (temporal pole)</td>
</tr>
<tr>
<td>7A</td>
<td>Middle frontal gyrus</td>
<td>L</td>
<td>−40 20 46</td>
<td>11.14</td>
<td>2D Paracentral lobule</td>
</tr>
<tr>
<td>23A</td>
<td>Middle frontal gyrus</td>
<td>R</td>
<td>48 10 40</td>
<td>10.02</td>
<td>12D Paracentral lobule</td>
</tr>
<tr>
<td>24A</td>
<td>Middle frontal gyrus</td>
<td>L</td>
<td>−34 6 58</td>
<td>9.99</td>
<td>3D Precuneus</td>
</tr>
<tr>
<td>42A</td>
<td>Middle frontal gyrus</td>
<td>R</td>
<td>38 10 58</td>
<td>7.74</td>
<td>32D Rolandic operculum</td>
</tr>
<tr>
<td>1A</td>
<td>Middle frontal gyrus (pars orbitalis)</td>
<td>L</td>
<td>−10 66 −4</td>
<td>13.42</td>
<td>27D Superior frontal gyrus</td>
</tr>
<tr>
<td>5A</td>
<td>Middle frontal gyrus (pars orbitalis)</td>
<td>R</td>
<td>38 56 −6</td>
<td>12.00</td>
<td>33D Superior frontal gyrus (pars medialis)</td>
</tr>
<tr>
<td>33A</td>
<td>Middle temporal gyrus</td>
<td>R</td>
<td>48 −50 16</td>
<td>9.11</td>
<td>10D Superior temporal gyrus</td>
</tr>
<tr>
<td>40A</td>
<td>Pulsed</td>
<td>L</td>
<td>−24 −12 0</td>
<td>8.01</td>
<td>15D Superior temporal gyrus</td>
</tr>
<tr>
<td>43A</td>
<td>Periaqueductal gray</td>
<td>L</td>
<td>−6 −28 −8</td>
<td>7.70</td>
<td>1D Superior temporal gyrus</td>
</tr>
<tr>
<td>47A</td>
<td>Periaqueductal gray</td>
<td>R</td>
<td>−26 −8</td>
<td>8.86</td>
<td>11D Superior temporal gyrus</td>
</tr>
<tr>
<td>27A</td>
<td>Postcentral gyrus</td>
<td>L</td>
<td>−52 −38 58</td>
<td>9.80</td>
<td>7D Superior temporal gyrus (temporal pole)</td>
</tr>
<tr>
<td>21A</td>
<td>Precentral gyrus</td>
<td>R</td>
<td>46 8 38</td>
<td>10.26</td>
<td>22D Superior temporal gyrus (temporal pole)</td>
</tr>
<tr>
<td>12A</td>
<td>Precuneus</td>
<td>L</td>
<td>−12 −66 42</td>
<td>10.85</td>
<td>25D Supplementary motor area</td>
</tr>
<tr>
<td>45A</td>
<td>Precuneus</td>
<td>R</td>
<td>16 −66 30</td>
<td>7.19</td>
<td></td>
</tr>
<tr>
<td>30A</td>
<td>Putamen</td>
<td>L</td>
<td>−26 6 0</td>
<td>9.50</td>
<td></td>
</tr>
<tr>
<td>35A</td>
<td>Putamen</td>
<td>R</td>
<td>24 2 12</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>13A</td>
<td>Rolandic operculum</td>
<td>R</td>
<td>50 2 14</td>
<td>10.83</td>
<td></td>
</tr>
<tr>
<td>34A</td>
<td>Superior frontal gyrus</td>
<td>R</td>
<td>10 28 58</td>
<td>8.96</td>
<td></td>
</tr>
<tr>
<td>39A</td>
<td>Superior frontal gyrus (pars medialis)</td>
<td>L</td>
<td>−12 30 60</td>
<td>8.31</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>Superior frontal gyrus (pars medialis)</td>
<td>R</td>
<td>10 62 6</td>
<td>12.75</td>
<td></td>
</tr>
<tr>
<td>14A</td>
<td>Superior frontal gyrus (pars orbitalis)</td>
<td>R</td>
<td>22 56 −2</td>
<td>10.76</td>
<td></td>
</tr>
<tr>
<td>25A</td>
<td>Superior parietal gyrus</td>
<td>L</td>
<td>−18 −62 54</td>
<td>9.89</td>
<td></td>
</tr>
<tr>
<td>26A</td>
<td>Supramarginal gyrus</td>
<td>R</td>
<td>58 −28 40</td>
<td>9.86</td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Thalamus</td>
<td>L</td>
<td>−12 −12 20</td>
<td>11.74</td>
<td></td>
</tr>
<tr>
<td>32A</td>
<td>Thalamus</td>
<td>R</td>
<td>10 −4 10</td>
<td>9.49</td>
<td></td>
</tr>
</tbody>
</table>

*Not shown in Figure 3.
Anatomic location, MNI-coordinates, and t-value for local maxima of significant (de)activation (p < 0.05) extracted from the contrast “all stimulation vs. no stimulation.” (L: left; R: right)
Figure 4. Effects of stimulation mode. The effect “burst vs. tonic mode” visualized in 12 locations (a–l). These are the right thalamus (a), the right cerebellum (b), the right caudate nucleus (c), the right middle cingulate gyrus (d), the left hypothalamus (e), the right periaqueductal gray (PAG) (f), the left paracentral lobule (S1) (g), the left lingual gyrus (V1) (h), the right anterior cingulate gyrus (j), the left superior temporal gyrus (S2) (k), and the right amygdala (l). For each location, the left picture shows the general effect of “all stimulation vs. no stimulation,” overlaid on axial slices of a spatially normalized T1-weighted brain. Significantly activated foci are shown in red and significantly deactivated foci are colored blue (p_corrected < 0.05). Foci of interest (in MNI-coordinates) are indicated by circles with corresponding t-values printed below. In the middle picture the significantly activated foci obtained after analysis of the effects “burst mode more than tonic mode” and “tonic mode more than burst mode” are overlaid on a spatially normalized T1-weighted brain and depicted in red and blue, respectively (p_corrected < 0.05). Foci of interest are again indicated by circles with corresponding t-values printed below. In the right graph the mean percent MR-signal change ± SEM after stimulation in burst and tonic mode is plotted for the marked foci. Plotted p-values were obtained after an unpaired t-test to verify the significance (p < 0.05) between the two bar graphs. MR, magnetic resonance.
Figure 5. Effects of different frequencies at different stimulation modes. Bar graphs of mean percent MR-signal change ± SEM during stimulation in burst (blue) and tonic (orange) mode plotted for seven different stimulation frequencies (3, 5, 6, 10, 12, 18, and 20 Hz) in six activated locations (a–f) and six deactivated locations (g–l). Different frequencies are indicated by different patterns. MR, magnetic resonance.
Radiofrequency-Induced Heating
Radiofrequency-induced heating that can occur because of absorption of RF energy by the tissue is an important safety issue as a temperature increase of $>5^\circ C$ at the electrodes or their leads causes a reversible malfunction of the neurons (30). A temperature of $>50^\circ C$ results in severe irreparable coagulation of brain matter or subcutaneous tissue (31). Routinely, SAR has been used as an indirect quantitative measure of RF energy in safety recommendations for clinical MRI procedures when conductive implants are present (17,22,29). Literature (17,26) states that it is imperative to use sequences with local SARs below 2.4 W/kg (whole-body averaged SAR smaller than 0.09 W/kg). However, other aspects resulting in RF-induced heating have to be taken into account: the position of the electrical leads (including the position in the patient and the relative position within the magnet), the used RF coils, the level of RF power, and hence the used sequences (15,16).

Georgi et al. (16) studied the effect of lead position on temperature elevation. When the lead was connected and placed along the z-axis of the scanner, no heating could be seen for low-SAR sequences such as GE-EPI. For high-SAR sequences such as T1w spin echo (SE), they measured heating directly at the electrode in the range of tenths of a degree Celsius. When the lead was placed closer to the RF coils (i.e., halfway between the scanner’s z-axis and tunnel wall), the temperature increase directly at the electrode was significantly higher ($\pm 2^\circ C$), irrespective of type of sequence. The greatest effects associated with temperature increase were observed when the lead was placed along the scanner’s tunnel wall, where the RF coils were located. That is an increase in temperature of 15.6$^\circ C$ at the electrode and 59.1$^\circ C$ along the lead outside the phantom, which was observed for the T1 SE sequence. For the GE-EPI sequence, the heating was 2.0$^\circ C$ and 3.4$^\circ C$, respectively. Based on these observations, we have chosen to position our leads centrally in the magnet bore along the z-axis of the scanner.

Rezai et al. (17) and Finelli et al. (26) conducted in vitro MRI-related heating studies using a 1.5T MR system with bilateral deep brain stimulation systems positioned in a gel-filled phantom. They found clinically insignificant temperature elevations of $<2^\circ C$ in association with clinical sequences used for brain imaging. However, these results were obtained using a transmit-receive head RF coil, which minimizes the exposure of the leads/neurostimulation system to the MRI RF fields. Recently, Bhidayasiri et al. (15) measured, a temperature elevation of 2.1$^\circ C$, despite the greater risk of using a transmit body RF-coil and receive-only head RF coil configuration. Based on previous studies of RF and other thermal ablation techniques, they concluded that transient temperature elevation of 2$^\circ C$ or less is unlikely to cause significant adverse thermogenic-related effects (32,33). Therefore, we used our standard transmit body RF-coil and receive-only head RF coil configuration to perform our measurements.

Induced Electrical Currents
Another important safety issue is the induction of voltage within the leads because of the presence of RF pulses and gradient fields. RF fields induce currents in electrical conductors that can result in an induced voltage and excessive heating. In addition, magnetic field gradients can induce currents in the electrodes that may result in neuronal stimulation (15).

In a previous feasibility study, Georgi et al. (16) measured the potential-induced voltages by means of an oscilloscope. They did not see any line surges induced by switching gradients, even with sequences that had particularly high slew rates such as GE-EPI. In contrast to the switching gradients, the RF pulses induced a significant voltage. For a GE-EPI sequence with the leads positioned along the z-axis of the scanner, the induced voltages had a maximum amplitude of about 7 V when the stimulator was switched on. The frequency of the induced voltage was 64 MHz, which corresponds to the magnetic field strength of 1.5T. The amplitude of the induced voltage was much higher when the connecting lead was positioned along the RF coils of the scanner. The induced voltage when using a SE sequence had an even higher amplitude of more than 5 kV. They concluded that the amplitude of the induced voltage depends considerably on the image sequence and the position of the leads. However, based on other previous studies (34,35), they concluded that an alternating voltage with frequencies higher than 10 kHz does not evoke action potentials in neuronal cells, even if the amplitude is in a physiologically effective range of a few volts. In this setting, a neurophysiologically relevant, net averaged voltage of 0 V can be assumed as the biological system is too slow to respond to a fast decrease in voltage. Therefore, untriggered stimulation of neurons and artificial neuronal activations during fMRI examination are not expected.

In conclusion, ours and previous studies have indicated that MRI examinations are harmless, in subjects with externalized electrodes, if these safety precautions are taken into account. It should be noted, however, that in subjects with internalized electrodes additional safety concerns will emerge that make MRI examinations unwarranted. Furthermore, Baker et al. (29) showed that MR criteria defined using a particular MR system configuration may not be readily applied to another. Therefore, it is essential, before scanning a volunteer, that safety experiments are reproduced for each specific setup.

Image Quality
Another concern related to performing MRI in the presence of conductive implants is the image quality. This can be affected in two ways. First, the electrodes and leads represent transitions in susceptibility and thus lead to signal loss because of T2* relaxation. This effect is an important factor in GE sequences, especially GE-EPI (16). However, by applying parallel imaging (SENSE-reduction factor $= 2$), there is no reduction in signal intensity visible near the implanted electrodes on the GE-EPI image in Figure 2b. Second, problems may arise from the pick-up of external RF sources by the connecting cable between the electrodes and the stimulator that is located outside the magnet room. To avoid image artifacts caused by RF power from external sources, RF filters were placed as electrical isolation. As depicted in Figure 2b, no characteristic pattern of straight lines along the frequency-encoding direction was seen in the GE-EPI image.

Central Nervous System Effects of Occipital Nerve Stimulation
The second goal of this study was to visualize the central effects evoked by ONS in a healthy volunteer by means of fMRI. Because of the absence of direct connections between the occipital nerves and with structures within the cortex itself, it was thought that stimulation of these nerves cannot bring about central effects. However, our results show clear central nervous system effects of ONS. Areas of activation were predominantly seen in the hypothalamus, the thalamus, the orbitofrontal cortex, the prefrontal cortex, the PAG, the inferior parietal lobe, and the cerebellum. Deactivation was seen in primary areas (M1, V1, A1, and S1), the amygdala, the paracerebral lobule, the hippocampus, S2, and SMA.

Matharu et al. (36) have found central effects of ONS by means of a positron emission tomography (PET) study in patients with chronic migraine. There were significant changes in regional cerebral blood flow (rCBF) in brain areas associated with pain, such as cingulate cortex, insula, frontal cortex, thalamus, basal ganglia, and cerebellum.
A possible explanation for central effects induced by ONS is the various indirect connections from the occipital nerves to the cortex. First, the occipital nerves do have excitatory connections with other nerves, in particular, the ophthalmic division of the trigeminal nerve (8,9) and form a continuous neural network affecting the trigeminal nucleus caudalis and the cervical dorsal horn at the C1 and C2 levels, collectively called the trigeminocephalic complex (10–13). The nucleus caudalis, located at the top of the spinal cord, projects to the thalamus which is a relay-station that distributes information to specific areas of the cortex. Second, different (reciprocal) connections were found between C2 and the hypothalamus (37), the orbitofrontal cortex (38), the amygdala (37,38), the caudate nuclei (39), the PAG (40,41), the thalamus (40,42), and the cerebellum (43).

Based on our main results ([de]activation irrespective of type of stimulation mode and frequency), and the above described (indirect) connections, one might suggest a possible working mechanism of ONS for pain treatment, in which the thalamus may play a key role. ONS led to activation of the thalamus in our study. In addition, literature has shown that the thalamus, especially the nucleus reticularis, functions as an inhibitory gate which can regulate the patterns of sensory input from the thalamus to the cortex (44). Although the resolution of our present fMRI technique is inadequate to parcelate different nuclei of the thalamus, our thalamic activity is seen at the outer rim of the thalamus (Fig. 3), and might thus correspond to the nucleus reticularis. Subsequently, the deactivation of the primary somatosensory (S1), auditory (A1) and visual (V1) cortices, the amygdala, the secondary somatosensory cortex (S2), and SMA may be a result of the inhibitory effect of the nucleus reticularis. Furthermore, it has been shown that in patients with peripheral neuropathic pain, there is a relative hypoperfusion of the thalamus (45). Additionally, in functional imaging studies on pain, different regions of the “pain-matrix” such as S1, S2, and the amygdala are generally activated (46). Therefore, ONS might reactivate the thalamus in chronic neuropathic pain diseases like occipital neuralgia and subsequently suppress the hyperactive S1, S2, and amygdala.

It should be noted, however, that this is a suggestive, not verified hypothesis and further research of the central working mechanism of ONS is crucial to compare results in both patients with chronic headache syndromes such as neuralgia and healthy volunteers. However, in previous PET studies with motor cortex stimulation (MCS) for patients with intractable pain, similar ideas have been formulated by Garcia-Larrea et al. (47,48). A CBF increase was found during MCS in the thalamus ipsilateral to stimulation, in the orbitofrontal and cingulate gyri, in the upper brainstem (49), and in the anterior insula/medial temporal lobe (50). It was stated that these results highlight the thalamus as the key structure mediating functional MCS effects. Thalamic activation would trigger a cascade of synaptic events influencing activity in other pain-related structures, including the anterior cingulate gyrus, insula/medial temporal lobe, subthalamic areas, and the upper brainstem. As a consequence, MCS could influence the affective-emotional component of chronic pain by way of cingulate/orbitofrontal effects (51) and lead to descending inhibition of pain impulses by activation of the brainstem (47).

To our knowledge, there are no other studies comparing the central effects of burst and tonic stimulation mode of ONS. However, Sherman et al. (52) focused on the thalamus and found that all thalamic relay cells respond to excitatory inputs in one or both modes. The two firing modes strongly affect the manner by which thalamic relay cells respond to incoming inputs. They demonstrated that thalamic burst mode activated cortical cells more than tonic stimulation. These findings seem to conflict with our obtained data, but an explanation can be proposed when assessing the effect of frequency.

Effect of Frequency
When applying different stimulation frequencies in tonic mode, a larger MR-signal change was measured than when stimulating in burst mode. When performing a more in-depth analysis, it was shown that during tonic mode stimulation, all frequencies induced similar global activation or deactivation effects. In burst mode, on the contrary, the seven frequencies contribute differently to the global brain activity. These preliminary data show that there is a difference between harmonics of 3 Hz (3, 6, 12, and 18 Hz) and harmonics of 5 Hz (5, 10, and 20 Hz). The harmonics of 3 Hz (especially 3, 6, and 18 Hz) have the largest contribution to the global brain activity. Additionally, an intensity-effect can be seen in a few regions, such as the middle cingulated gyrus (Fig. 5d), PAG (Fig. 5f), S1 (Fig. 5g), V1 (Fig. 5h), and S2 (Fig. 5k). There appears to be a relation between the frequency and the percent MR-signal change, but the extent of this relation remains to be elucidated in future studies. Furthermore, questions remain concerning the differential effects seen when stimulating with harmonics of 3 Hz or 5 Hz. On one hand, it could be that different harmonics induce different physiologic effects, but on the other hand it could also be that the observation of such an effect is an accidental finding in this study. Therefore, further prospective study is needed to assess the effect of stimulation frequency to its full extent.

We are aware of the shortcomings of this experiment, namely the use of only one healthy volunteer, the limited number of stimulation frequencies, the lack of subthreshold stimulation, and the lack of blinding. However, this is a pioneer study, to provide on one hand insight in the feasibility of fMRI while stimulating the occipital nerves by means of externalized electrodes and on the other hand the central nervous system effects of ONS objectively visualized by means of 3T fMRI in a healthy volunteer. Therefore, this study is the starting point to numerous studies helping us to understand the working mechanism of neuromodulation techniques for the treatment of intractable pain.

CONCLUSION
As long as severe safety precautions are taken, it is feasible to perform 3T fMRI studies with simultaneous subcutaneous ONS. ONS seems to evoke distinct, but significant (de)activation patterns in the brain, in which tonic mode stimulation has an overall larger effect. This overall larger effect can partially be explained by an effect of used stimulation frequency. The unravelling of these patterns could contribute to the understanding of the beneficial effects seen in ONS treatment of patients with chronic pain.

Acknowledgments
We thank St. Jude Medical for their support.
Authorship Statements
The authors contributed in the following way: hypothesis and study design: D. DeRidder, S. Kovacs, S. Sunaert, T. Menovsky, and M. Plazier. Data collection: S. Kovacs and S. Sunaert. Experimental setup, safety testing and data analysis: R. Peeters and S. Kovacs. Manuscript draft preparation: S. Kovacs, D. DeRidder, M. Plazier, and T. Menovsky. Editorial support: T. Menovsky, D. DeRidder, and S. Sunaert. All authors approved the final manuscript.

How to Cite this Article:

REFERENCES

COMMENTS

This is a very important study that may become a beginning of a new era of clinical research. Peripheral nerve stimulation (and particularly occipital nerve stimulation) rapidly becomes widely accepted by the neuromodulation community as the means of pain control in various clinical circumstances. At the same time, the lack of basic understanding on how it all works raises many concerns regarding its applicability, safety, long-term effects, patient selection and many other areas related to this attractive and minimally-invasive modality.

In the past, MRI incompatibility of existent neurostimulation devices precluded investigators from using MRI as a research tool—hence the previous experience with PET studies investigating effects of ONS on brain activity.1 cited by the authors. Functional MRI, however, provides better spatial and temporal resolution, and its use in defining central effects of ONS/PNS is highly desirable. Therefore, appearance of this research paper is very timely. I applaud the authors in developing the protocol, following minute details and securing a volunteer for the project.

To some extent, this resembles initial pioneering experience of famous neurosurgeons and neuroscientists of the past—when Drs. Patrick D. Wall and William H. Sweet inserted PNS electrodes into their own infraorbital foramina in order to show pain suppression during electrical nerve stimulation and thereby provide some proof of the 'gate-control' theory of pain.2

I agree with the authors that their conclusions, based on a single person without chronic pain, should not be taken as an ultimate explanation of observed clinical effects of ONS. Eventually, we may find that central processing changes in response to chronic suffering and varies in different clinical conditions (such as migraines, cluster headaches, occipital neuralgia, fibromyalgia—just to name few diagnoses for which this modality has been successfully used), and therefore ONS may have different effects in different patient populations.

Development of MRI-compatible neurostimulation devices may eliminate our concerns about safety of MRI-based research projects. But until these devices are available, we will have to rely on dedication of those few research centers that are equipped with expertise to define safe scanning procedures and are willing to pursue in-depth investigation of cerebral neuromodulation processes.

In my opinion, this paper creates more questions than answers—and to address them all, the authors and other researchers will have to continue developing research paradigms in exploring the mechanisms that underlie our clinical observations. One has to keep in mind, however, that data described in this paper does not provide blanket safety statement regarding high-power MRI in ONS and, in particular, does not address the issue of MRI safety in patients with implanted neurostimulation generators.

Konstantin V. Slavin, MD
Professor
Neurological Surgery—CS
University of Illinois at Chicago
Chicago, IL, USA

I congratulate the authors on presenting a cogent and very informative, detailed analysis of an ONS neurophysiologic response using state of the art fMRI technology. This initial study not only helps correlate peripheral nervous system influences on central processes and responses, but also shows that MRI technologies can be used safely to further our understanding of CNS/PNS neurostimulation mechanisms.

Richard Weiner, MD
Dallas Neurosurgical Associates
Dallas, TX, USA

In "Central Effects of Occipital Nerve Stimulation Studied By fMRI"10 Kovacs et al. provide a valuable proof-of-concept study of a single patient in whom the patterns of cortical activation induced by tonic or burst mode occipital nerve stimulation were examined with fMRI. Importantly, they describe their study-specific phantom preparation, as issues related to MRI safety in studies of implanted electrodes are highly dependent on the details of electrode composition, orientation and position, as well as of the scan parameters, including SAR and frequencies. Significant attention has been turned to MRI safety with implanted neurostimulators, but most of this work has been done in reference to deep brain stimulation1–3,6,8,9 or electrodes in the spinal canal.4,9 This article draws important attention to the fact that many of these concerns are not as severe in PNS implantations as in the brain or over the spinal cord.

It is interesting that they appear to have implanted a normal volunteer. At many centers, there would be considerable concern about performing an invasive procedure to manipulate cerebral metabolism, without a clinical indication, as a safety study. The results are very general, as expected. As in studies of SCS5 and VNS7, the patterns of activation and deactivation are quite broad and difficult to interpret in a single study without an a priori hypothesis in question. The differential response to bursting versus tonic stimulation is particularly inviting for further investigation.

Kenneth M. Aló, MD
Director, Interventional Pain Medicine
Houston Texas Pain Management
Houston, TX, USA

Associate Professor and NeuroCardiology Section Director
Institute of Cardiology and Vascular Medicine
Monterrey Technical University
Monterrey, Mexico

Erich Richter, MD
Assistant Professor of Neurosurgery
Department of Neurosurgery
LSU Health Sciences Center
New Orleans, LA, USA

References:

Comments not included in the EarlyView version of this paper.