PO47
PRISM study: occipital nerve stimulation for treatment-refractory migraine
Lipton RB1, Goadsby PJ2, Cady RK3, Aurora SK4, Grosberg BM1, Freitag FG5, Silberstein SD6, Whiten DM7 and Jaax KN7
1Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; 2UCSF Headache Center, University of California, San Francisco, San Francisco, CA, USA; 3Headache Care Center, Clinvest, Springfield, MO, USA; 4Pain and Headache Center, Swedish Medical Center, Seattle, WA, USA; 5Outpatient Service, Diamond Headache Clinic, Chicago, IL, USA; 6Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA; 7Neuromodulation, Boston Scientific, Valencia, CA, USA

Objectives: To investigate the safety and efficacy of occipital nerve stimulation (ONS) for the preventive treatment of refractory migraine.
Background: ONS may offer a safe and effective alternative to the currently limited therapeutic options available to migraine sufferers that fail pharmacological management.
Methods: This multi-center, double-blind, randomized controlled trial enrolled participants who (1) met the 2004 International Classification of Headache Disorders (ICHD-2) diagnostic criteria for migraine with aura, migraine without aura, and/or chronic migraine; (2) presented as drug-refractory (failed therapy with at least two acute and two preventive medications); and (3) had ≥6 days per month of long-duration (≥4 hours) migraine with moderate/severe pain (migraine day). Those overusing acute medications at baseline, per ICHD-2 criteria, were included as a pre-specified analysis subgroup. Prior to implantation, both arms received 5–10 days of percutaneous trial stimulation, using their randomized settings, to evaluate the predictive value of a treatment trial on 12-week outcome. Subjects were randomized 1:1, to receive bilateral active (250 μsec pulses, 60 Hz, 0–12.7 mA) versus sham (10 μsec pulses, 2 Hz, <1 mA, 1 sec on/90 min off duty cycle) stimulation for 12-weeks post-implantation of an ONS device. The primary endpoint, captured by daily electronic diary entries, was the change from baseline in migraine days/month evaluated 12 weeks after implantation. At 12 weeks, sham subjects were converted to active settings. Diary follow-up continued for 52 weeks.

Results: Of 179 patients screened for enrollment, 140 eligible subjects were randomized, 132 were implanted and 125 completed 12-week follow-up. For the primary endpoint, reduction in migraine days/month, the difference across treatment arms was not significant (-5.5 vs.-3.9 days/month, P = 0.29, Table 1). There was a trend towards a greater difference between treatment arms for those not overusing medication (-5.9 vs.-2.6) in comparison with the medication overuse subgroup (-5.0 vs.-4.8). In the active arm, a favorable response to the percutaneous treatment trial was moderately predictive of 12-week response (positive likelihood ratio = 2.0, 95% CI [1.4 2.9]; negative likelihood ratio = 0.21, CI [0.06 0.78]). Two-year aggregate safety data revealed infection, non-target area sensory symptoms, and implant site pain as the most-frequent device related adverse events.

Conclusions: Active ONS did not produce statistically significant benefits in relation to sham stimulation on the primary endpoint. Heterogeneity in treatment response suggests that there may be a treatment responsive subgroup. Future studies should endeavor to identify and randomize patients likely to respond to stimulation, based in part on the absence of medication overuse and a favorable response to a trial of percutaneous treatment.
PO47

PRISM study: occipital nerve stimulation for treatment-refractory migraine

Lipton RB1, Goadsby PJ2, Cady RK3, Aurora SK4, Grosberg BM1, Freitag FG5, Silberstein SD6, Whiten DM7 and Jaax KN7

1Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; 2UCSF Headache Center, University of California, San Francisco, San Francisco, CA, USA; 3Headache Care Center, Clinvest, Springfield, MO, USA; 4Pain and Headache Center, Swedish Medical Center, Seattle, WA, USA; 5Outpatient Service, Diamond Headache Clinic, Chicago, IL, USA; 6Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA; 7Neuromodulation, Boston Scientific, Valencia, CA, USA

Objectives: To investigate the safety and efficacy of occipital nerve stimulation (ONS) for the preventive treatment of refractory migraine.

Background: ONS may offer a safe and effective alternative to the currently limited therapeutic options available to migraine sufferers that fail pharmacological management.

Methods: This multi-center, double-blind, randomized controlled trial enrolled participants who (1) met the 2004 International Classification of Headache Disorders (ICHD-2) diagnostic criteria for migraine with aura, migraine without aura, and/or chronic migraine; (2) presented as drug-refractory (failed therapy with at least two acute and two preventive medications); and (3) had ≥ 6 days per month of long-duration (> 4 hours) migraine with moderate/severe pain (migraine day). Those overusing acute medications at baseline, per ICHD-2 criteria, were included as a pre-specified analysis subgroup. Prior to implantation, both arms received 5–10 days of percutaneous trial stimulation, using their randomized settings, to evaluate the predictive value of a treatment trial on 12-week outcome. Subjects were randomized 1:1, to receive bilateral active (250 μsec pulses, 60 Hz, 0–12.7 mA) versus sham (10 μsec pulses, 2 Hz, < 1 mA, 1 sec on / 90 min off duty cycle) stimulation for 12-weeks post-implantation of an ONS device. The primary endpoint, captured by daily electronic diary entries, was the change from baseline in migraine days/month evaluated 12 weeks after implantation. At 12 weeks, sham subjects were converted to active settings. Diary follow-up continued for 52 weeks.

Results: Of 179 patients screened for enrollment, 140 eligible subjects were randomized, 132 were implanted and 125 completed 12-week follow-up. For the primary endpoint, reduction in migraine days/month, the difference across treatment arms was not significant (-5.5 vs.-3.9 days/month, $P = 0.29$, Table 1). There was a trend towards a greater difference between treatment arms for those not overusing medication (-5.9 vs.-2.6) in comparison with the medication overuse subgroup (-5.0 vs.-4.8). In the active arm, a favorable response to the percutaneous treatment trial was moderately predictive of 12-week response (positive likelihood ratio = 2.0, 95% CI [1.4 2.9]; negative likelihood ratio = 0.21, CI [0.06 0.78]). Two-year aggregate safety data revealed infection, non-target area sensory symptoms, and implant site pain as the most-frequent device related adverse events.

Table 1.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Baseline days/month (mean ± SD)</th>
<th>Change at 12-weeks (mean ± SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>63</td>
<td>20.2 ± 7.2</td>
<td>-5.5 ± 8.7</td>
<td>0.29</td>
</tr>
<tr>
<td>Sham</td>
<td>62</td>
<td>19.2 ± 7.9</td>
<td>-3.9 ± 8.2</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Active ONS did not produce statistically significant benefits in relation to sham stimulation on the primary endpoint. Heterogeneity in treatment response suggests that there may be a treatment responsive subgroup. Future studies should endeavor to identify and randomize patients likely to respond to stimulation, based in part on the absence of medication overuse and a favorable response to a trial of percutaneous treatment.